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Outline

• Present experimental constraints on sterile neutrino models

• Sensitivity to sterile neutrinos in MiniBooNE

• Neutrino flux and cross-sections, and their importance for the MiniBooNE
νµ disappearance measurement
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Beyond minimal extensions of the SM

• Minimally extended SM: three massive neutrinos

• There are three experimental hints pointing toward neutrino oscillations:
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LSND ⇒ need more than three massive neutrinos?
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Is LSND due to ν̄µ → ν̄e oscillations? MiniBooNE will tell

• The LSND evidence: 〈P (ν̄µ → ν̄e)〉 = (0.264± 0.045± 0.067)%

• MiniBooNE will address in a definite and independent way the LSND evidence
for ν̄µ → ν̄e oscillations

• definite: same Lν/Eν ratio as for LSND and
enough statistics to cover the LSND region at
the 5σ level

• independent: Eν = 0.3 − 1.5 GeV and
Lν = 540 m are both a factor of 10 larger
than LSND, resulting in very different back-
grounds to the oscillation search and system-
atics for the ν flux and particle ID
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Sterile neutrino models: a wide range of possibilities. . .

• Can solar, atmospheric, and LSND be explained by introducing one or more
neutrinos with no standard weak couplings (“sterile neutrinos”)?

• Noninteracting particles can be hard to find experimentally, but not
theoretically. . . most theories explaining the origin of neutrino masses require
sterile neutrinos!

• Possible neutrino mass and mixing scenarios (colored boxes indicate weak
flavor content of mass eigenstates):

Model: (2+2) (3+1) (3+2)
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Constraints on (3+1) and (3+2) models from SBL
experiments

• General oscillation formula depends on several neutrino masses mi and ele-
ments Uαi of the mixing matrix relating flavor to mass eigenstates:

P (να → νβ) = δαβ − 4

n∑
j>i

n∑
i

UαjUβjUαiUβi sin
2
[1.27L(m

2
j −m

2
i )/E]

• (3+1), (3+2): can consider constraints from short-baseline experiments only

• (3+1): P (νµ → νe) depends only upon m4, Ue4, Uµ4

• (3+2): P (νµ → νe) depends only upon m4, Ue4, Uµ4, m5, Ue5, Uµ5

• Method: perform a combined χ2 analysis of the “Null Short- BaseLine” exper-
iments Bugey and CHOOZ (ν̄e → ν̄x), CCFR and CDHS (νµ → νx), KARMEN
(ν̄µ → ν̄e), to derive upper limits on the LSND oscillation probability

pLSND ≡ 〈P (ν̄µ → ν̄e)〉LSND : ν̄ → ν̄e probability averaged over LSND L/E distribution

⇒ is this NSBL upper limit consistent with the nonzero LSND result?
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The (3+1) case

Two-neutrino approximation is valid
for (3+1) models

⇒ In (sin2 2θµe,∆m2) space, the
region to the right of the curve is
EXCLUDED at 90% CL by NSBL
experiments

Some ∆m2 “islands” are allowed
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The (3+2) case

Limits on the LSND oscillation probability (90% CL)

pLSND ≡ 〈P (ν̄µ → ν̄e)〉LSND

ν̄µ → ν̄e probability averaged over LSND L/E

NSBL 90% upper limits for (3+2) models are less
stringent than for (3+1) models by ' 40%

⇒ (3+2) models to be preferred to (3+1)?
pLSND (10-2)

0 0.1 0.2 0.3 0.4

Limits on “2ν mixing” (90% CL)

2ν approximation is not valid for (3+2), since there are
three ∆m2: m2

4, m2
5, m2

5 −m2
4.

Define “effective” 2ν mixing angle θµe and ∆m2:

sin
2
2θµe,eff〈sin2

(1.27∆m
2
effL/E)〉LSND ≡ pLSND
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Preferred values of neutrino masses in (3+1) and (3+2)
models

• A joint analysis of NSBL and LSND data gives the following allowed regions
(grey is 90% CL, black is 99% CL):
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• A combined analysis gives much better guidance than LSND alone on what
∆m2 might be responsible for the LSND signal
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MiniBooNE

• 12 m in diameter sphere filled with 800 tons
of mineral oil

• A sphere-within-a-sphere:

• Light tight inner signal region is lined with
1280 PMTs
10% coverage

• Outer spherical shell serves as veto region (240
PMTs)

• Neutrino interactions in the oil produce:

• Prompt and ring-distributed Cherenkov light

• Late and isotropically-distributed scintillation
light
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Typical muon candidate event
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MiniBooNE physics potential

• MiniBooNE result on νµ → νe search expected by 2005

• Between now and 2005. . .

• results on νµ disappearance

• searches for exotic particles

• supernova watch

• cross-section measurements

• Neutrino models explaining LSND can give a measurable νµ deficit in Mini-
BooNE:

Model Is a MiniBooNE Disappearance Sensitive?
(3+1) yes
(3+2) yes
(2+2) no?
CPTV yes (in ν̄µ running)
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νµ disappearance in (3+1): how large can it be?

Pick as example three viable
models, from joint
NSBL+LSND analysis:
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MiniBooNE can see a large νµ deficit

Energy shape information can
significantly improve the MiniBooNE
sensitivity for:
few 0.1 ≤ ∆m2 ≤ few eV 2

L/E (km/GeV)

P(
ν µ→

ν µ)

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 0.5 1 1.5 2 2.5 3

Michel Sorel, Columbia U. 13



νµ disappearance sensitivity in MiniBooNE

Expected MiniBooNE 90% CL
sensitivity by the end of the year
should lie somewhere between the
solid and the dashed red line. . .

Dots are predictions for some viable
(3+1) models
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• MiniBooNE reach at low ∆m2 should extend significantly beyond present lim-
its. This is a very interesting neutrino mass region!
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νµ disappearance: limiting experimental factors

• The MiniBooNE νµ measurement will be systematics-dominated

• Systematics affecting the rate and energy distribution:

• Number of beam protons
• νµ flux
• νµ cross-sections
• Event reconstruction
• Energy resolution/calibration
• Event selection

• A two-detector experiment (BooNE?) can

• push the sensitivity curve “to the left”: by taking far-to-near νµ event rate
ratios, some systematic uncertainties cancel

• push the sensitivity curve “down”: by placing the 2nd detector downstream of
the 1st, low ∆m2 reach can be further extended

• Main uncertainties: νµ flux and cross-section
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The BooNE Beam

B π+

µ+

νµ

Primary Beam:
high-intensity 8 GeV
proton source from
FNAL Booster.
MiniBooNE requires
1021 protons on target
⇔ 2 years of running

Secondary Beam:
protons strike a 71
cm beryllium target,
producing secondary
π±’s, K±’s.
Magnetic focusing of
secondary beam from
horn surrounding the
target

Neutrino Beam:
π+ → µ+ νµ in the
25/50 m decay chan-
nel.
After absorber, al-
most pure νµ beam
pointing towards the
detector
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Neutrino flux in MiniBooNE

• νµ flux peaks at ' 1 GeV

• Flux uncertainty is due to the π+

production uncertainty in p-Be
interactions

• To gain a better understanding of the flux:

• combined analysis of existing π production data in p-Be
⇒ “K2K-style” global parametrization of d2σ/dp d cos θ for p + Be → π+ + X

• collaboration with BNL E910 experiment to analyze more recent data on thin Be targets

• collaboration with HARP experiment at CERN
⇒ data taken last summer with replica of thick Be target used in MiniBooNE; data
analysis is ongoing

• GEANT4-based simulation of the flux interfaced to all this wealth of physics information
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Flux 1: combined analysis of existing
p + Be → π+ + X data

• MiniBooNE needs: pb = 8.9 GeV/c, pπ = 0.5 - 4 GeV/c, θπ = 0 - 15 deg

• “Sanford-Wang” parametrization fits data reasonably well (10-15% level):

Experiment θπ (deg) pb (GeV/c) pπ (GeV/c) Error

Allaby 70 0 - 5 19.1 6 - 18 15 - 20%
Asbury 68 12, 15 12.5 3 - 5 15%
Cho 71 0 - 11 12.4 2 - 6 10 - 15%
Dekkers 64 0, 5 18.8 2 - 12 10%
E910 2001 15, 31.8 12.3, 17.5 0.1 - 1.2 5 - 10%
Marmer 71 0, 3, 5 12.3 0.5 - 2.5 15%
Papp 75 12.5 1.753 - 5.0 0.5 - 3.5 10%
Vorontsov 88 3.5 10.1 1 - 4.5 25%

(analysis by Jocelyn Monroe, Columbia U.)
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Flux 2: HARP and BNL E910

• Current generation experiments, with better statistics and particle ID, 4π cov-
erage, wider choice of beam momenta and targets

HARP BNL E910

• Goal: reduce uncertainty in π-production data to the few % level

• HARP should allow us to understand π+ reinteractions in Be as well (thin/thick
target comparisons)
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Neutrino cross-sections in the ∼ 1 GeV range

• For a good review: Sam Zeller, “Low Energy Neutrino Interactions”, U1.004

• Dominant processes at 1 ' GeV are neutrino-nucleon Quasi-Elastic scattering
and resonant π production:

• Not very well understood:

• Not much data

• Nuclear effects play an important role

• Transition region: inelastic channels start to contribute

Michel Sorel, Columbia U. 20



Quasi-Elastic cross-section and νµ disappearance

The best known process is the QE interaction

⇒ select a “QE-like” data sample only for
MiniBooNE νµ disappearance?

• Collaborative effort to improve the cross-section knowledge is ongoing. Two
examples:

• use e−-nucleus scattering data to understand nuclear effects

• reanalyze 20 yr-old data with updated free nucleon form factors (see H. Budd, A. Bodek,
P13.011)
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Summary

• Phenomenologists like sterile neutrinos to explain LSND. . .
and theorists like them too!

• Combining LSND with other oscillation results provides hints where to look

• How to find sterile neutrinos? Disappearance measurements

• Disappearance can be large!

• MiniBooNE νµ disappearance result will extend beyond our current sensitivity
reach

• 50k νµ event candidates are on tape already, and MiniBooNE should have a
competitive νµ disappearance measurement by 2003

• Conclusive test of the LSND evidence for oscillations in 2005, with the Mini-
BooNE νµ → νe result
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